A Case for MVPs: Mixed-Precision Vector Processors

Albert Ou, Quan Nguyen, Yunsup Lee, Krste Asanovi¢
University of California, Berkeley
{aou, quannguyen, yunsup, krste}@eecs.berkeley.edu

Abstract

Mixed-precision computation presents opportunities for pro-
grammable accelerators to improve performance and energy
efficiency while retaining application flexibility. We augment
Hwacha, a decoupled vector-fetch data-parallel accelerator, to
support dynamic configuration of architectural register widths
and operations on packed data. We discuss the implications on
the programming model and the microarchitectural features
for maximizing register file utilization and datapath paral-
lelism. A complete VLSI implementation quantifies the impact
on area, performance, and energy consumption.

1. Introduction

To accommodate increasingly sophisticated functionality un-
der stringent power constraints, computing platforms must
meet simultaneous demands for greater efficiency and flexi-
bility. Compared to fixed-function hardware, programmable
processors contend with inefficiencies from at least two major
sources: wasteful power consumption by over-provisioned
datapaths and overhead of instruction delivery. We propose
seamless mixed-precision computation on a vector architecture
to address both aspects.

Many applications exhibit a broad variation in data value
widths. Fixed-function accelerators attain significantly better
energy efficiency and performance by exploiting minimal and
heterogeneous word widths in their custom datapaths. By con-
trast, processors must support a range of conventional datatype
widths to fulfill a general-purpose role. Thus, the datapath is
typically fixed at the maximum precision potentially employed
by any application. For certain applications (e.g., multimedia
and signal processing) that do not require the highest avail-
able precision, unnecessary energy is expended obtaining an
equivalent result.

Rarely is one global precision optimal throughout all stages
of computation; for example, the widths of addresses and
integer data often differ, and in widening arithmetic opera-
tions such as a fused multiply-add (FMA), the product of n-bit
values is added to a 2n-bit accumulator without intermediate
rounding. For versatility, a processor should be able to simul-
taneously intermix several reduced-precision modes according
to application-specific conditions.

Data-level parallelism (DLP) is the most efficient form of
parallelism with respect to control overhead. Vector proces-
sors perform multiple homogeneous and independent oper-
ations with each concise instruction, thereby amortizing the

cost of instruction fetch, decode, and sequencing. The inher-
ent regularity and parallelism of vector operations promote
extensive scalability in lane organization to meet varying per-
formance/power targets. Vector data accesses also adhere to
highly structured and predictable patterns, allowing for mi-
croarchitectural optimizations such as prefetching and register
file banking [9] to reduce port count.

Vector architectures are readily adaptable to reduced-
precision computation. Due to the intrinsic data independence,
a wide datapath can be naturally partitioned into multiple
narrower elements. Compaction improves the utilization of
register file accesses and interconnection fabric for operand
communication, and additional functional units can be intro-
duced to leverage subword parallelism with relatively small
area cost. Most importantly, increased throughput enables
faster race-to-halt into a low power state.

Moreover, denser storage of elements lessens memory pres-
sure and allows for longer vectors with the same register file
capacity. The expanded buffering assists with decoupled exe-
cution in more effectively hiding memory latency.

Section 2 reviews existing approaches and their disadvan-
tages. In response, section 3 presents a more refined solution
for mixed-precision vector processing. Section 4 describes the
baseline accelerator design, and section 5 elaborates on the mi-
croarchitectural changes for mixed precision. Section 6 details
a preliminary evaluation based on a VLSI implementation.

2. Related Work

Commercial ISAs, including x86 and ARM, popularly feature
instruction set extensions for SIMD (AVX [7] and NEON [1],
respectively). While also capable of packed subword com-
putations, these share certain architectural shortcomings that
render them inconvenient for a mixed-precision environment.
* Opcodes designate a fixed vector length. Exposing the hard-
ware SIMD width in the ISA hinders portability. Code must
be recompiled to benefit from longer SIMD widths, and
migration becomes yet more tedious if explicit intrinsics are
used instead of an auto-vectorizing compiler. Such incom-
patibilities necessitate CPU dispatch techniques to select
between different versions of code at runtime. Software is
also burdened by the trailing edge case when the application
vector length is not a multiple of the SIMD width, a situation
further complicated by the lack of general ISA support for
masking inactive elements.
* All vector registers are uniformly fixed in size. Consequently,
the number of elements per vector register varies at different

precisions, and it is not so straightforward to chain mixed-

precision operations. Equalizing vector lengths might in-

volve splitting a vector across several architectural registers,
depleting register encoding space.

e The vector length is typically short, currently at most 256
bits. These SIMD extensions, electing for the path of least re-
sistance towards subword parallelism, re-use existing scalar
datapaths and control. Superscalar complexity therefore
places a practical upper bound on the SIMD width. Im-
plementations rely nearly exclusively on spatial execution
of vector operations, forcing the use of superscalar issue
mechanisms to saturate functional units and hide long op-
erational latencies. With shorter hardware vectors, more
stripmine iterations are required to cover the application
vector length. This redundancy counteracts the instruction
bandwidth efficiency of SIMD.

Some GPUs and microcontrollers implement limited sup-
port for variable precision by storing wider datatypes across
several narrower architectural registers. For example, double-
precision floating-point values might occupy pairs of 32-bit
registers and be referenced solely through even register speci-
fiers, effectively halving the available register set.

Asanovic¢ [2] and Kozyrakis [8] each describe how a vector
machine can be treated as an array of “virtual processors”
whose datapath widths are set collectively through a virtual
processor width (VPW) register. However, the precision of an
individual vector cannot be configured independently.

3. Mixed-Precision Vector Processors

Traditional vector machines, descended from the Cray arche-
type [15], offer a cleaner abstraction than SIMD extensions.
With modifications, mixed floating-point and fixed-point pre-
cisions can be expressed with minimal complexity.

Current work extends the architecture to allow fine-grained
runtime configuration of the vector register set, such that the
number of architectural registers can be specified as well as
their individual datatype widths. The hardware automatically
determines the appropriate register file mapping, subdivides
physical registers as needed to hold multiple elements, and
adjusts the hardware vector length to either the maximum
possible or a software-requested value if shorter.

Hardware management of register allocation and vector
lengths lends several advantages in terms of flexibility. Pro-
grams can exchange unused architectural registers for longer
hardware vectors. Furthermore, subword packing is effectively
transparent to the application. An implementation lacking full
mixed-precision support can ignore configuration hints and
still execute the same code, albeit at reduced efficiency. An
extremely broad spectrum of possible designs is therefore
feasible without compromising portability, crucial given the
proliferating diversity of mobile platforms.

Hwacha is a decoupled vector-fetch data-parallel acceler-
ator [11] which serves as the vehicle for our architectural
exploration. Its microarchitecture and programming paradigm

1 start:

2 vsetcfg 2, 1, 1, 2 # Configure 2 integer, 1 double,
3 # 1 single, and 2 half registers
4 la x1, vtcode # Load vector-fetch address

5 1i x2, vlen # Load application vector length
6

7 loop:

8 vsetvl %3, x2 # Set hardware vector length

9 vild vi0, (x4) # Load vector from pointer x4
10 vfls vil, (x5) # Load vector from pointer x5
11 vE (x2) # Execute vector-fetch block
12 vsd vxl, (x6) # Store vector to pointer x6
13 # Pointer increment omitted
14 sub X2, x2, x3 # Update application vector length
15 bnez x2, loop # Loop if more elements remain
16 3 exit

18 vtcode:

19 fcvt.h.d f£f2, fO # Convert vf0 (double) to half

20 fevt.h.s £3, fl # Convert vfl (single) to half

21 fadd.h £3, £3, f2 # FP add vf2 (half) and v£3 (half
22 fecvt.l.h x1, £f3 # Convert vf3 (half) to integer
23 stop # End vector-fetch block

Figure 1: Example mixed-precision assembly code

Bank 1 Bank 0
viO[1] vi0[0]
vi0[3] viO[2]
vi0[5] vi0[4]
vi0[7] vi0[6]
vfl[3] vfl[1] vil[2] vfl1[0]
vfl[7] vfl[5] vil[6] vfl[4]
vi2[7] | vf2[5] | vf2[3] [vi2[1] vi2[6] | vi2[4] | vf2[2] [vi2[0]
vi3[7] | vf3[5] [vi3[3] | vf3[1] vi3[6] | vi3[4] [vf3[2] | vi3[0]

Figure 2: Resultant vector register file mapping. The numbers
in brackets identify the element’s index in the vector.

combines facets of predecessor vector-threaded architectures,
such as Maven [4, 10], with concepts from traditional vector
machines—in particular, divergence handling mechanisms in
software.

An asynchronous control thread dispatches traditional vec-
tor commands to manage and configure a set of microthreads
(uT), as well as to initiate vector memory and broadcast op-
erations. To assign the microthreads a workload, the control
thread sends a vector-fetch (v£) command indicating the initial
PC of a separate instruction stream. From a logical perspective,
vector operations appear as an array of microthreads, each
delegated an individual element, executing the same scalar
instructions of the vector-fetch code in lockstep. Hwacha sup-
ports the full complement of RISC-V integer, floating-point,
load/store, and atomic memory instructions [17].

The number of resident microthreads represents the hard-
ware vector length, which the control thread may detect
through the vsetvl command. To handle application vectors
of arbitrary length, a common pattern is to fragment processing
over multiple vector-fetch sessions (“stripmining”).

Microthreads may be uniformly distributed up to 32 integer
and 32 floating-point registers each via the vset c £g command.
Each scalar register, as viewed from a microthread, correlates
with one element of the vector register as viewed from the
control thread.

Figure | presents an excerpt of mixed-precision assembly
code, for which Figure 2 depicts an example mapping of vec-
tor registers to two banks of eight 64-bit physical registers.
By explicitly configuring the vector unit with vsetcfg, the
program interacts with v£0, v£1, v£2, and v£3 as vectors of
double-, single-, and half-precision floating-point registers, re-
spectively. The program also has access to two vector integer
registers, vx0 and vx1 (not shown), the former of which is
hardwired to zero. Register v£1 fits two elements per bank
entry, whereas v£2 and v£3 fit four. Note that this packing
arrangement yields a hardware vector length of eight.

4. Baseline Implementation

The Hwacha accelerator interfaces with the Rocket processor,
a six-stage in-order RISC-V scalar core [11] onto which the
control thread is mapped. Figure 3 illustrates a system-level
block diagram. Hwacha possesses a 8 KiB direct-mapped L1
instruction cache, and Rocket possesses a 16 KiB 2-way set-
associative L1 instruction cache. Both share a 32 KiB 4-way
set-associative L1 data cache. A unified 256 KiB 8-way set-
associative L2 cache backs the primary caches. DRAMSim?2
provides the DDR3 timing model [13].

Rocket Hwacha
scalar core vector core
| 16 KiB I$ | | 32 KiB D$ | | 8 KiB VI$ |
I I I
| 3:1 arbiter |
Tile
| 256 KiB L2$ |
Uncore |

v
DRAMSIim2 DDR3 model

Figure 3: System integration

Figure 4 presents a general block diagram of the accelera-
tor. Hwacha is internally decoupled into two components: the
single-lane Vector Execution Unit (VXU), which encompasses
the register file and the functional units, and the Vector Mem-
ory Unit (VMU), which coordinates data movement between
the VXU and the memory system.

4.1. Vector Execution Unit

Traditional vector instructions arrive from the control proces-
sor through the Vector Command Queue (VCMDQ). Upon
encountering a vf command, the vector-fetch frontend begins
instruction fetch at the PC provided with the VCMDQ entry
and proceeds until a st op instruction is reached.

The fetched instructions are decoded by the issue unit and
then wait in the hazard-checking unit until all structural haz-
ards pertaining to the occupancy of sequencer slots, bank
read/write ports, and functional units are resolved.

o

[

= &

=

(=}

A

A
N

Int

T
[] rq R

crossbar

VXU
[— e T —
V\iAQ VSfQ I VLDQ I
| VMU L__’I VRU |
| L1 D$ |

Figure 4: Block diagram of the Hwacha accelerator

Once clear of the hazard unit, instructions are placed into
the sequencer, a circular array of state and control information
about every active instruction. Each entry in the sequencer en-
capsulates an operation associated with a particular functional
unit. A pointer cycles across the eight sequencer entries in a
static round-robin schedule. When the pointer reaches a valid
entry in the array and no relevant stall conditions are raised,
the corresponding operation is conveyed to the expander.

The expander converts a sequencer operation into its con-
stituent micro-ops (nops), which are sets of low-level control
signals. These are inserted into shift registers with the dis-
placement of the read and write pops coinciding exactly with
the functional unit latency. Upon being released to the lane,
the pops iterate through the microthreads as they sequentially
traverse the banks cycle by cycle, as depicted in Figure 5. For
vector lengths not a multiple of the bank count, the pops au-
tomatically disable themselves for elements past the end of
the vector. The sequencer operation retires when it has been
sequenced enough iterations to complete a hardware vector.

A crossbar switch connects the vector register file, orga-
nized into eight 256 x 64b SRAM banks, with the long-latency
functional units.

clock cycles ——»

]
2l
LW
.
.

1

¥
1

¥
1

:
i

¥

1

12
ElEl

1
¥
1
3
i
:
1
¥

i
2
1
:
!
=
¥

¥
i

i
2
i
3
i
3
i
:

]
—
HENN

]

;
.

A
A

Figure 5: Systolic bank execution. The banked vector regis-
ter file effectively delivers two operands per cycle from each
1R1W SRAM bank after an initial two-cycle latency.

4.2. Vector Memory Unit

The VMU exists to fulfill memory requests from the VXU. To
better tolerate variable memory latency and simplify timing,
the decoupled VMU interfaces with the rest of the vector unit
through a set of queues [6]. Figure 6 outlines the internal
organization of the VMU.

For each memory operation, the issue unit populates the
VMU command queue with the operation type, data type,
and vector length. A separate queue provides a base address
and a stride for traditional vector operations. The Address
Generation Unit (AGU) decomposes constant-stride vector
accesses into an individual request for each element. Ad-
dresses for scatters and gathers instead arrive from the VXU
through the Vector Virtual Address Queue (VVAQ). Virtual
addresses are translated and saved in the Vector Physical Ad-
dress Queue (VPAQ). Requests are throttled by the VXU to
facilitate restartable exceptions [16]. The Vector Refill Unit
(VRU) analyzes impending vector memory operations and
generates prefetch commands for the memory hierarchy [5].

Load and store data are buffered within the Vector Load
Data Queue (VLDQ) and Vector Store Data Queue (VSDQ),
respectively. Each register file bank deposits store data into a
shallow two-entry queue, whose contents are then multiplexed
by the Vector Store Unit (VSU) into the VSDQ.

The Vector Load Unit (VLU) bears the task of routing ele-
ments from the VLDQ to their respective register file banks.
As the memory interface may return responses in arbitrary or-
der, shallow two-entry queues in front of the banks implement
an opportunistic writeback mechanism to reduce latency.

5. Mixed-Precision Implementation

Our microarchitectural extensions for mixed precision focus
on the modules shaded in Figures 4 and 6. We introduced
reduced-precision arithmetic units, modified the issue/hazard
units and the sequencer to consider the side effects of register
compaction, and implement packed accesses in the VMU.

VXU VvVSsu VLU

Vector Virtual l

Address Queue %‘ EI é‘
(VVAQ)

Vector Load

Vector Store

Data Queue Data Queue
command— |—' Address (VSDQ) (VL‘DQ)
Generation
base :I:I]_,, Unit (AGU)
stride
vaddr l l metadata
fault?
Address
Data TLB Translation
Unit (ATU)
paddrl l Store Data
Vector Physical Aligner
Address Queue
(VPAQ)
Throttle Load
Metadata >
metadata] Buffer
A
address data tag response

Memory Interface

li

Figure 6: Block diagram of the Vector Memory Unit

Mixed-precision computation introduces new hazards aris-
ing from variations in throughput. The baseline design, for all
operations, processes exactly eight elements with every pass
through the lane. However, by packing two single-precision
or four half-precision floating-point values into a physical reg-
ister, each pass in the MVP design can potentially manage as
many as 16 or 32 elements, respectively. The challenges in
control logic may be summarized as follows:

1. Packed operations cannot proceed at maximum rate when
subject to a data dependency on a slower predecessor that
has not yet completed.

2. Source and destination registers may be read and written at
unequal rates for mixed-precision operations.

5.1. Mixed-Precision Vector Chaining

Chaining allows vector operations to execute in an interleaved
manner. Interim results may be consumed by subsequent
operations without waiting for the entire vector to complete.
This technique dramatically compresses the execution time
with a justifiable degree of control complexity. Chaining,
however, relies on balancing throughput between operations.
Fundamentally, newer and faster instructions must be pre-
vented from overtaking older and slower instructions. Here,
age pertains to program order, and speed pertains to the max-
imum number of elements processed per sequencing event.
Since the sequencer already records the progress of each oper-
ation, it requires only minimal extra logic to stall an operation
when it is poised to advance beyond a previous one. This
approach is overly conservative in that it restricts progress
regardless of whether actual data hazards occur, but compared
with examining true register dependencies, the amount of logic
is greatly diminished without sacrificing much performance.

5.2. Divergent Read/Write Rates

Operations involving unequal input and output precisions are
more difficult to sequence because the rate at which operands
are read differs from that at which results are written.

For example, the fmv. x . h instruction moves half-precision
floating-point values into integer registers. It reads four times
as many elements in one pass through the eight banks as it
can write in one pass through the eight banks. To compensate
for the mismatch, the same SRAM entries are read four times,
but each pass selects a different portion of the SRAM entry
and hence a different architectural register. The 32 converted
results are written in four passes across the eight banks. How-
ever, unlike the read operation, the address of the destination
register changes between each pass of the write operation.

As another example, the fcvt.s.d instruction converts
from double-precision to single-precision floating-point val-
ues. In this case, each read of a whole source SRAM entry
corresponds to half of a destination entry. To store partial
results, a write mask is provided to the SRAM array.

5.3. Register Mapping

The register mapping scheme—how SRAM entries are or-
ganized into architectural registers—strongly affects the ef-
ficiency of microthread execution. So as to maintain a reg-
ular systolic cascade of pops through the banks, the entire
state of a microthread resides within the same SRAM bank.
Consecutive microthreads are striped across banks, such that
microthreads execute sequentially by index as a pop descends.
This avoid structural hazards that would otherwise require
uops to be scheduled differently for distinct banks. Essential
to the tractability of the control logic is the “fire-and-forget”
principle, which stipulates that pops must never stall after
being produced by the expander.

These properties must be preserved when adapting the reg-
ister mapping scheme to support architectural registers of
varying widths. The banks are segmented into integer, double,
single, and half regions, such that registers of the same type
are situated together and can be addressed by constant stride.
Due to the microthread striping, elements packed contigu-
ously within the same SRAM entry correspond with indices
eight apart (the number of banks). Although the VXU/VMU
interface becomes slightly more complicated in rearranging
elements between register order and memory order, mixed-
precision vector chaining is substantially eased by mapping a
microthread’s registers to the same bank regardless of width.

5.4. Vector Memory Unit

Although orthogonal to subject of mixed precision, maintain-
ing a balance between compute and memory performance is
generally desirable per Ahmdahl’s law. With subword pack-
ing now enabling the VXU to deliver load and store data at
increased rates, the VMU must be similarly augmented to
sustain higher throughput.

For unit-stride vector accesses to fully utilize the available
memory bandwidth, the AGU now supports coalescing as
many adjacent elements into each request as the width of the
memory interface permits, which for the L1 data cache is 64
bits. The VMU correctly handles edge cases involving base
addresses not 64 bit-aligned and irregular vector lengths not a
multiple of the packing density. An aligner module, interposed
between the VSDQ and the memory interface, shifts the store
data appropriately for unaligned vector and scatter operations.

As mentioned in the prior subsection, elements are arranged
non-contiguously in the packed register format to aid the im-
plementation of mixed-precision vector chaining. The VLU
repacks elements from memory to register order, using a
rotation-based permutation network to route elements to multi-
ple banks in parallel. The VSU performs the inverse maneuver,
repacking elements from register to memory order.

6. Evaluation

We rely on direct simulation of a VLSI implementation to
evaluate the microarchitecture in terms of area, performance,
and energy dissipation. Preliminary results are encouraging.

6.1. Physical Design

The RTL description for Hwacha, along with Rocket and
the uncore, is written in the Chisel hardware construction
language [3]. The Chisel-generated Verilog code underwent a
Synopsys-based ASIC design flow using Design Compiler for
logic synthesis and IC Compiler for place-and-route, targeting
the TSMC40GPLUS technology at a clock period of 1ns.
Without a memory compiler for the same process available to
us, the SRAMs were modeled as black-box modules with area,
timing, and power characterized by CACTI 6.5 [12].

Figure 7 displays the final VLSI layout. The critical paths
involve the uncore and L1 data cache, with worst negative
slacks of —0.18 ns for baseline and —0.20 ns for MVP.

Figure 7: Layout of the reference chip

Table 1: Area distribution

baseline mvp A

Module Hierarchy ~ mm? % mm? % %
Top 3.583 100.0 3.792 100.0 5.8
L Hwacha 0.906 25.3 1.063 28.0 17.3
Issue 0.009 0.2 0.012 0.3 35.5
Seq 0.033 0.9 0.039 1.0 19.3
Lane 0.605 16.9 0.701 18.5 15.9
tFMA 0.149 4.2 0.235 6.2 57.7
Conv 0.030 0.8 0.030 0.8 1.6
VSuU 0.014 0.4 0.017 0.5 21.9
VLU 0.024 0.7 0.036 0.9 49.4
VMU 0.051 1.4 0.082 2.2 60.9

6.2. Benchmarking

Power estimates were obtained with the Synopsys PrimeTime
suite from simulation of the post-layout gate-level netlist, back-
annotated with parasitic information extracted from ICC.

For each of the following evaluation kernels, we assessed
several incarnations varying by floating-point precision (dou-
ble, single, half) and by register width configuration, which ei-
ther enables or disables packed execution (two single-precision
or four half-precision values per bank entry). The recorded
tests all commenced with a cold cache.

The FFT kernel performs a radix-2 one-dimensional fast
Fourier transform across n = 1024 data points. The butter-
fly’s bit-reversal permutation is realized through scatter/gather
memory operations, which tend to limit the performance of the
VMU and dominate execution time. The benchmark therefore
gauges the improvement due solely to increased FMA through-
put and smaller memory footprint from narrower datatypes.

The AXPY kernel calculates Ax 4y, where A is a square
matrix and x and y are vectors of dimension n = 128. The
unit-stride vector memory operations exercise the VMU un-
der favorable conditions, in order to determine the maximum
effectiveness of coalesced accesses and cache prefetching by
the VRU.

6.3. Comparative Analysis

Area The modifications for mixed-precision processing in
Hwacha result in a 0.2 mm? expansion in area, or a 17.3%
increase in the accelerator itself. This manifests as an overhead
of 5.8% in terms of the overall chip area. Table 1 enumerates
a breakdown by hierarchy. Introducing two single-precision
and six half-precision float-point units, distributed equally
among two independent FMA clusters, contributes 0.086 mm?.
Growth of the VMU, VLU, and VSU accounts for 0.046 mm?.
Performance Table 2 summarizes the benchmarking results.
If half-precision suffices, subword packing in the mixed-
precision design enhances performance by 22.1% for FFT
and 62.1% for AXPY over baseline double-precision. Lever-
aging coalesced accesses alone still effects gains of 14.1% for
FFT and 58.8% for AXPY. Both benchmarks ultimately be-

come memory-bounded, and so the speedup remains sublinear
relative to the packing density, owing largely to cache misses.
Power All of the supplementary logic in Hwacha exacts an
inevitable rise in power consumption. The most pronounced in-
creases, as detailed in Table 3, ensue from the lane, sequencer,
and VMU. Forthcoming optimizations for clock gating should
significantly curtail the power dissipation of idle floating-point
units. Aside from the expected improvement of the functional
units at reduced precisions, the overall power efficiency of the
vector lane also benefits considerably from diminished SRAM
read and write activity with denser register packing.

Energy With lesser precisions, the penalty in power is suffi-
ciently offset by the increased throughput to yield an ample
recovery in total energy expenditure. Single-precision gen-
erally represents a break-even point; packed half-precision
operations can conserve as much as 11% overall.

Table 2: Performance and energy

baseline mvp A%
precision / packed? cycles w cycles u cycles [
double no 135919 124 135789 14.0 —0.1 12.9
o single no 119275 104 119601 11.9 0.3 14.4
& single yes — 109683 10.5 —8.0 1.0
half no 116767 9.9 117093 11.4 0.3 152
half yes — 105921 9.6 -9.3 -3.0
double no 100687 8.4 100443 9.4 —0.2 11.9
>, single no 60673 5.1 57579 53 —5.1 3.9
E; single yes — 53817 48 —-113 -59
< half no 41521 35 38427 35 -17.5 0.0
half yes — 38199 3.1 -80 114

Note: Numbers from packed kernels on mvp are compared to those from unpacked
kernels of the same precision on baseline.

7. Conclusions and Future Work

In future design iterations, we plan to implement the full range
of floating-point and integer conversion operations, many of
which exercise the newly-implemented rate control logic in
the sequencer. We aim to support subword packing of integer
registers as we have done for floating-point values.

Furthermore, we intend to examine the benefits of mixed-
precision vector processing on wider applications such as the
Smith-Waterman local alignment algorithm, a staple of com-
putational biology. Because the genomic sequences used by
the algorithm select from an alphabet of four to five charac-
ters, using the full 64 bits of a modern architectural register
would be wasteful where 8 bits or fewer would suffice. Molec-
ular dynamics simulation offers another avenue to explore—
convergence and accuracy concerns aside, reducing the preci-
sion of these computations stand to greatly improve the speed
of simulation.

To relieve programmers from the task of manually configur-
ing Hwacha for mixed-precision computation, we would like
to integrate it with support for Precimonious, a tool that auto-
matically determines the appropriate floating-point precision
based on values observed during runtime [14].

Table 3: Average power (mW)

baseline mvp
precision double single half double single single half half
packed? no no no no no yes no yes
Top 91.4 86.9 84.5 103.0 99.9 95.5 97.5 90.5
L Hwacha 54.5 51.7 50.5 65.5 64.3 59.6 63.0 55.2
F Issue 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
+ Seq 2.6 2.7 2.7 35 3.6 3.6 3.6 35
E + Lane 39.4 36.6 355 48.1 46.6 41.8 46.0 38.0
& tFMA 9.6 7.2 6.5 13.6 11.9 10.5 11.2 9.4
Conv 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
+VSU 0.9 0.9 0.9 0.9 0.8 0.7 0.7 0.5
+ VLU 1.5 1.3 1.2 2.1 2.2 22 1.8 1.9
L VMU 2.3 2.5 2.3 3.1 3.4 33 32 33
Top 83.9 83.3 83.4 93.7 92.3 90.1 90.3 81.4
L Hwacha 37.1 38.3 41.2 46.2 48.5 45.0 52.2 434
+ Issue 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
+ Seq 2.3 2.4 2.3 3.0 2.9 3.1 29 3.1
E: + Lane 22.8 23.2 25.5 30.4 32.8 29.3 36.5 28.3
& tFMA 5.0 5.0 5.0 8.4 8.4 8.4 8.4 8.4
Conv 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
+VSU 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.3
+ VLU 1.3 1.5 1.6 1.7 1.7 1.8 1.7 1.7
L VMU 1.3 1.7 2.1 1.9 1.8 1.8 1.6 1.6

To conclude, we augmented Hwacha to support mixed-
precision vector processing while retaining architectural sim-
plicity. The performance and energy efficiency gains from
reduced-precision configurations, as demonstrated by our pre-
liminary VLSI implementation, affirm the viability of mixed-
precision computation in programmable accelerators.

8. Acknowledgements

We would like to thank Stephen Twigg for contributing the FFT
software implementation and for assisting with floorplanning.

Research is partially funded by DARPA Award Number
HRO0011-12-2-0016, the Center for Future Architecture Re-
search, a member of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA, and
ASPIRE Lab industrial sponsors and affiliates Intel, Google,
Nokia, NVIDIA, Oracle, and Samsung. Any opinions, find-
ings, conclusions, or recommendations in this paper are solely
those of the authors and does not necessarily reflect the posi-
tion or the policy of the sponsors.

References

[1] ARM Architecture Reference Manual: ARMvS, for ARMvS-A architec-
tural profile, ARM Limited, Dec. 2013.

[2] K. Asanovié, “Vector Microprocessors,” Ph.D. dissertation, University
of California, Berkeley, May 1998.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,
J. Wawrzynek, and K. Asanovié, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, June 2012, pp. 1212-1221.

[4] C. Batten, “Simplified Vector-Thread Architectures for Flexible and
Efficient Data-Parallel Accelerators,” Ph.D. dissertation, Massachusetts
Institute of Technology, Feb. 2010.

[5] C. Batten, R. Krashinsky, S. Gerding, and K. Asanovié, “Cache Re-
fill/Access Decoupling for Vector Machines,” in Proceedings of the

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

37th Annual IEEE/ACM International Symposium on Microarchitec-
ture, ser. MICRO 37. Washington, DC, USA: IEEE Computer Society,
2004, pp. 331-342.

R. Espasa and M. Valero, “A Simulation Study of Decoupled Vector
Architectures,” The Journal of Supercomputing, vol. 14, no. 2, pp.
124-152, Sep. 1999.

Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
1: Basic Architecture, Intel Corporation, Feb. 2014.

C. Kozyrakis, “Scalable Vector Media Processors for Embedded Sys-
tems,” Ph.D. dissertation, University of California, Berkeley, May
2002.

A. E. Lahti, “Scientific processor vector file organization,” Oct. 1989,
US Patent 4,875,161.

Y. Lee, R. AvizZienis, A. Bishara, R. Xia, D. Lockhart, C. Batten,
and K. Asanovié, “Exploring the Tradeoffs Between Programmability
and Efficiency in Data-Parallel Accelerators,” ACM Transactions on
Computer Systems, vol. 31, no. 3, pp. 6:1-6:38, Aug. 2013.

Y. Lee, A. Waterman, R. AviZienis, H. Cook, C. Sun, V. Stojanovi¢,
and K. Asanovié, “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W
RISC-V Processor with Vector Accelerators,” in 2014 European Solid-
State Circuits Conference (ESSCIRC-2014), Venice, Italy, Sep. 2014.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007. MICRO 2007. 1EEE Computer Society, Dec.
2007, pp. 3-14.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16-19, Jan. 2011.

C. Rubio-Gonzilez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
Assistant for Floating-point Precision,” in Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013,
pp. 27:1-27:12.

R. M. Russell, “The CRAY-1 Computer System,” Communications of
the ACM, vol. 21, no. 1, pp. 63-72, Jan. 1978.

H. Vo, Y. Lee, A. Waterman, and K. Asanovié, “A Case for OS-Friendly
Hardware Accelerators,” in 7th Annual Workshop on the Interaction
between Operating System and Computer Architecture (WIVOSCA), at
ISCA, 2013.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovié, “The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA Version 2.0,”
EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2014-54,
May 2014.

	Introduction
	Related Work
	Mixed-Precision Vector Processors
	Baseline Implementation
	Vector Execution Unit
	Vector Memory Unit

	Mixed-Precision Implementation
	Mixed-Precision Vector Chaining
	Divergent Read/Write Rates
	Register Mapping
	Vector Memory Unit

	Evaluation
	Physical Design
	Benchmarking
	Comparative Analysis

	Conclusions and Future Work
	Acknowledgements

